Collective name of 6 mathematical functions
"Hyperbolic curve" redirects here. For the geometric curve, see
Hyperbola .
In mathematics , hyperbolic functions are analogues of the ordinary trigonometric functions , but defined using the hyperbola rather than the circle . Just as the points (cos t , sin t ) form a circle with a unit radius , the points (cosh t , sinh t ) form the right half of the unit hyperbola . Also, similarly to how the derivatives of sin(t ) and cos(t ) are cos(t ) and –sin(t ) respectively, the derivatives of sinh(t ) and cosh(t ) are cosh(t ) and sinh(t ) respectively.
Hyperbolic functions are used to express the angle of parallelism in hyperbolic geometry . They are used to express Lorentz boosts as hyperbolic rotations in special relativity . They also occur in the solutions of many linear differential equations (such as the equation defining a catenary ), cubic equations , and Laplace's equation in Cartesian coordinates . Laplace's equations are important in many areas of physics , including electromagnetic theory , heat transfer , and fluid dynamics .
The basic hyperbolic functions are:[ 1]
hyperbolic sine "sinh " (),[ 2]
hyperbolic cosine "cosh " (),[ 3]
from which are derived:[ 4]
hyperbolic tangent "tanh " (),[ 5]
hyperbolic cotangent "coth " (),[ 6] [ 7]
hyperbolic secant "sech " (),[ 8]
hyperbolic cosecant "csch " or "cosech " ([ 3] )
corresponding to the derived trigonometric functions.
The inverse hyperbolic functions are:
inverse hyperbolic sine "arsinh " (also denoted "sinh−1 ", "asinh " or sometimes "arcsinh ")[ 9] [ 10] [ 11]
inverse hyperbolic cosine "arcosh " (also denoted "cosh−1 ", "acosh " or sometimes "arccosh ")
inverse hyperbolic tangent "artanh " (also denoted "tanh−1 ", "atanh " or sometimes "arctanh ")
inverse hyperbolic cotangent "arcoth " (also denoted "coth−1 ", "acoth " or sometimes "arccoth ")
inverse hyperbolic secant "arsech " (also denoted "sech−1 ", "asech " or sometimes "arcsech ")
inverse hyperbolic cosecant "arcsch " (also denoted "arcosech ", "csch−1 ", "cosech−1 ","acsch ", "acosech ", or sometimes "arccsch " or "arccosech ")
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a , sinh a ) , where a is twice the area between the ray, the hyperbola, and the x -axis. For points on the hyperbola below the x -axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
The hyperbolic functions take a real argument called a hyperbolic angle . The magnitude of a hyperbolic angle is the area of its hyperbolic sector to xy = 1. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.
In complex analysis , the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions . As a result, the other hyperbolic functions are meromorphic in the whole complex plane.
By Lindemann–Weierstrass theorem , the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.[ 12]
The first known calculation of a hyperbolic trigonometry problem is attributed to Gerardus Mercator when issuing the Mercator map projection circa 1566. It requires tabulating solutions to a transcendental equation involving hyperbolic functions.[ 13]
The first to suggest a similarity between the sector of the circle and that of the hyperbola was Isaac Newton in his 1687 Principia Mathematica .[ 14]
Roger Cotes suggested to modify the trigonometric functions using the imaginary unit
i
=
−
1
{\displaystyle i={\sqrt {-1}}}
to obtain an oblate spheroid from a prolate one.[ 14]
Hyperbolic functions were formally introduced in 1757 by Vincenzo Riccati .[ 14] [ 13] [ 15] Riccati used Sc. and Cc. (sinus/cosinus circulare ) to refer to circular functions and Sh. and Ch. (sinus/cosinus hyperbolico ) to refer to hyperbolic functions.[ 14] As early as 1759, Daviet de Foncenex showed the interchangeability of the trigonometric and hyperbolic functions using the imaginary unit and extended de Moivre's formula to hyperbolic functions.[ 15] [ 14]
During the 1760s, Johann Heinrich Lambert systematized the use functions and provided exponential expressions in various publications.[ 14] [ 15] Lambert credited Riccati for the terminology and names of the functions, but altered the abbreviations to those used today.[ 15] [ 16]
sinh , cosh and tanh
csch , sech and coth
There are various equivalent ways to define the hyperbolic functions.
Exponential definitions [ edit ]
sinh x is half the difference of ex and e −x
cosh x is the average of ex and e −x
In terms of the exponential function :[ 1] [ 4]
Hyperbolic sine: the odd part of the exponential function, that is,
sinh
x
=
e
x
−
e
−
x
2
=
e
2
x
−
1
2
e
x
=
1
−
e
−
2
x
2
e
−
x
.
{\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e^{2x}-1}{2e^{x}}}={\frac {1-e^{-2x}}{2e^{-x}}}.}
Hyperbolic cosine: the even part of the exponential function, that is,
cosh
x
=
e
x
+
e
−
x
2
=
e
2
x
+
1
2
e
x
=
1
+
e
−
2
x
2
e
−
x
.
{\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}={\frac {e^{2x}+1}{2e^{x}}}={\frac {1+e^{-2x}}{2e^{-x}}}.}
Hyperbolic tangent:
tanh
x
=
sinh
x
cosh
x
=
e
x
−
e
−
x
e
x
+
e
−
x
=
e
2
x
−
1
e
2
x
+
1
.
{\displaystyle \tanh x={\frac {\sinh x}{\cosh x}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}={\frac {e^{2x}-1}{e^{2x}+1}}.}
Hyperbolic cotangent: for x ≠ 0 ,
coth
x
=
cosh
x
sinh
x
=
e
x
+
e
−
x
e
x
−
e
−
x
=
e
2
x
+
1
e
2
x
−
1
.
{\displaystyle \coth x={\frac {\cosh x}{\sinh x}}={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}={\frac {e^{2x}+1}{e^{2x}-1}}.}
Hyperbolic secant:
sech
x
=
1
cosh
x
=
2
e
x
+
e
−
x
=
2
e
x
e
2
x
+
1
.
{\displaystyle \operatorname {sech} x={\frac {1}{\cosh x}}={\frac {2}{e^{x}+e^{-x}}}={\frac {2e^{x}}{e^{2x}+1}}.}
Hyperbolic cosecant: for x ≠ 0 ,
csch
x
=
1
sinh
x
=
2
e
x
−
e
−
x
=
2
e
x
e
2
x
−
1
.
{\displaystyle \operatorname {csch} x={\frac {1}{\sinh x}}={\frac {2}{e^{x}-e^{-x}}}={\frac {2e^{x}}{e^{2x}-1}}.}
Differential equation definitions [ edit ]
The hyperbolic functions may be defined as solutions of differential equations : The hyperbolic sine and cosine are the solution (s , c ) of the system
c
′
(
x
)
=
s
(
x
)
,
s
′
(
x
)
=
c
(
x
)
,
{\displaystyle {\begin{aligned}c'(x)&=s(x),\\s'(x)&=c(x),\\\end{aligned}}}
with the initial conditions
s
(
0
)
=
0
,
c
(
0
)
=
1.
{\displaystyle s(0)=0,c(0)=1.}
The initial conditions make the solution unique; without them any pair of functions
(
a
e
x
+
b
e
−
x
,
a
e
x
−
b
e
−
x
)
{\displaystyle (ae^{x}+be^{-x},ae^{x}-be^{-x})}
would be a solution.
sinh(x ) and cosh(x ) are also the unique solution of the equation f ″(x ) = f (x ) ,
such that f (0) = 1 , f ′(0) = 0 for the hyperbolic cosine, and f (0) = 0 , f ′(0) = 1 for the hyperbolic sine.
Complex trigonometric definitions [ edit ]
Hyperbolic functions may also be deduced from trigonometric functions with complex arguments:
Hyperbolic sine:[ 1]
sinh
x
=
−
i
sin
(
i
x
)
.
{\displaystyle \sinh x=-i\sin(ix).}
Hyperbolic cosine:[ 1]
cosh
x
=
cos
(
i
x
)
.
{\displaystyle \cosh x=\cos(ix).}
Hyperbolic tangent:
tanh
x
=
−
i
tan
(
i
x
)
.
{\displaystyle \tanh x=-i\tan(ix).}
Hyperbolic cotangent:
coth
x
=
i
cot
(
i
x
)
.
{\displaystyle \coth x=i\cot(ix).}
Hyperbolic secant:
sech
x
=
sec
(
i
x
)
.
{\displaystyle \operatorname {sech} x=\sec(ix).}
Hyperbolic cosecant:
csch
x
=
i
csc
(
i
x
)
.
{\displaystyle \operatorname {csch} x=i\csc(ix).}
where i is the imaginary unit with i 2 = −1 .
The above definitions are related to the exponential definitions via Euler's formula (See § Hyperbolic functions for complex numbers below).
Characterizing properties [ edit ]
It can be shown that the area under the curve of the hyperbolic cosine (over a finite interval) is always equal to the arc length corresponding to that interval:[ 17]
area
=
∫
a
b
cosh
x
d
x
=
∫
a
b
1
+
(
d
d
x
cosh
x
)
2
d
x
=
arc length.
{\displaystyle {\text{area}}=\int _{a}^{b}\cosh x\,dx=\int _{a}^{b}{\sqrt {1+\left({\frac {d}{dx}}\cosh x\right)^{2}}}\,dx={\text{arc length.}}}
The hyperbolic tangent is the (unique) solution to the differential equation f ′ = 1 − f 2 , with f (0) = 0 .[ 18] [ 19]
The hyperbolic functions satisfy many identities, all of them similar in form to the trigonometric identities . In fact, Osborn's rule [ 20] states that one can convert any trigonometric identity (up to but not including sinhs or implied sinhs of 4th degree) for
θ
{\displaystyle \theta }
,
2
θ
{\displaystyle 2\theta }
,
3
θ
{\displaystyle 3\theta }
or
θ
{\displaystyle \theta }
and
φ
{\displaystyle \varphi }
into a hyperbolic identity, by:
expanding it completely in terms of integral powers of sines and cosines,
changing sine to sinh and cosine to cosh, and
switching the sign of every term containing a product of two sinhs.
Odd and even functions:
sinh
(
−
x
)
=
−
sinh
x
cosh
(
−
x
)
=
cosh
x
{\displaystyle {\begin{aligned}\sinh(-x)&=-\sinh x\\\cosh(-x)&=\cosh x\end{aligned}}}
Hence:
tanh
(
−
x
)
=
−
tanh
x
coth
(
−
x
)
=
−
coth
x
sech
(
−
x
)
=
sech
x
csch
(
−
x
)
=
−
csch
x
{\displaystyle {\begin{aligned}\tanh(-x)&=-\tanh x\\\coth(-x)&=-\coth x\\\operatorname {sech} (-x)&=\operatorname {sech} x\\\operatorname {csch} (-x)&=-\operatorname {csch} x\end{aligned}}}
Thus, cosh x and sech x are even functions ; the others are odd functions .
arsech
x
=
arcosh
(
1
x
)
arcsch
x
=
arsinh
(
1
x
)
arcoth
x
=
artanh
(
1
x
)
{\displaystyle {\begin{aligned}\operatorname {arsech} x&=\operatorname {arcosh} \left({\frac {1}{x}}\right)\\\operatorname {arcsch} x&=\operatorname {arsinh} \left({\frac {1}{x}}\right)\\\operatorname {arcoth} x&=\operatorname {artanh} \left({\frac {1}{x}}\right)\end{aligned}}}
Hyperbolic sine and cosine satisfy:
cosh
x
+
sinh
x
=
e
x
cosh
x
−
sinh
x
=
e
−
x
{\displaystyle {\begin{aligned}\cosh x+\sinh x&=e^{x}\\\cosh x-\sinh x&=e^{-x}\end{aligned}}}
which are analogous to Euler's formula , and
cosh
2
x
−
sinh
2
x
=
1
{\displaystyle \cosh ^{2}x-\sinh ^{2}x=1}
which is analogous to the Pythagorean trigonometric identity .
One also has
sech
2
x
=
1
−
tanh
2
x
csch
2
x
=
coth
2
x
−
1
{\displaystyle {\begin{aligned}\operatorname {sech} ^{2}x&=1-\tanh ^{2}x\\\operatorname {csch} ^{2}x&=\coth ^{2}x-1\end{aligned}}}
for the other functions.
sinh
(
x
+
y
)
=
sinh
x
cosh
y
+
cosh
x
sinh
y
cosh
(
x
+
y
)
=
cosh
x
cosh
y
+
sinh
x
sinh
y
tanh
(
x
+
y
)
=
tanh
x
+
tanh
y
1
+
tanh
x
tanh
y
{\displaystyle {\begin{aligned}\sinh(x+y)&=\sinh x\cosh y+\cosh x\sinh y\\\cosh(x+y)&=\cosh x\cosh y+\sinh x\sinh y\\\tanh(x+y)&={\frac {\tanh x+\tanh y}{1+\tanh x\tanh y}}\\\end{aligned}}}
particularly
cosh
(
2
x
)
=
sinh
2
x
+
cosh
2
x
=
2
sinh
2
x
+
1
=
2
cosh
2
x
−
1
sinh
(
2
x
)
=
2
sinh
x
cosh
x
tanh
(
2
x
)
=
2
tanh
x
1
+
tanh
2
x
{\displaystyle {\begin{aligned}\cosh(2x)&=\sinh ^{2}{x}+\cosh ^{2}{x}=2\sinh ^{2}x+1=2\cosh ^{2}x-1\\\sinh(2x)&=2\sinh x\cosh x\\\tanh(2x)&={\frac {2\tanh x}{1+\tanh ^{2}x}}\\\end{aligned}}}
Also:
sinh
x
+
sinh
y
=
2
sinh
(
x
+
y
2
)
cosh
(
x
−
y
2
)
cosh
x
+
cosh
y
=
2
cosh
(
x
+
y
2
)
cosh
(
x
−
y
2
)
{\displaystyle {\begin{aligned}\sinh x+\sinh y&=2\sinh \left({\frac {x+y}{2}}\right)\cosh \left({\frac {x-y}{2}}\right)\\\cosh x+\cosh y&=2\cosh \left({\frac {x+y}{2}}\right)\cosh \left({\frac {x-y}{2}}\right)\\\end{aligned}}}
sinh
(
x
−
y
)
=
sinh
x
cosh
y
−
cosh
x
sinh
y
cosh
(
x
−
y
)
=
cosh
x
cosh
y
−
sinh
x
sinh
y
tanh
(
x
−
y
)
=
tanh
x
−
tanh
y
1
−
tanh
x
tanh
y
{\displaystyle {\begin{aligned}\sinh(x-y)&=\sinh x\cosh y-\cosh x\sinh y\\\cosh(x-y)&=\cosh x\cosh y-\sinh x\sinh y\\\tanh(x-y)&={\frac {\tanh x-\tanh y}{1-\tanh x\tanh y}}\\\end{aligned}}}
Also:[ 21]
sinh
x
−
sinh
y
=
2
cosh
(
x
+
y
2
)
sinh
(
x
−
y
2
)
cosh
x
−
cosh
y
=
2
sinh
(
x
+
y
2
)
sinh
(
x
−
y
2
)
{\displaystyle {\begin{aligned}\sinh x-\sinh y&=2\cosh \left({\frac {x+y}{2}}\right)\sinh \left({\frac {x-y}{2}}\right)\\\cosh x-\cosh y&=2\sinh \left({\frac {x+y}{2}}\right)\sinh \left({\frac {x-y}{2}}\right)\\\end{aligned}}}
sinh
(
x
2
)
=
sinh
x
2
(
cosh
x
+
1
)
=
sgn
x
cosh
x
−
1
2
cosh
(
x
2
)
=
cosh
x
+
1
2
tanh
(
x
2
)
=
sinh
x
cosh
x
+
1
=
sgn
x
cosh
x
−
1
cosh
x
+
1
=
e
x
−
1
e
x
+
1
{\displaystyle {\begin{aligned}\sinh \left({\frac {x}{2}}\right)&={\frac {\sinh x}{\sqrt {2(\cosh x+1)}}}&&=\operatorname {sgn} x\,{\sqrt {\frac {\cosh x-1}{2}}}\\[6px]\cosh \left({\frac {x}{2}}\right)&={\sqrt {\frac {\cosh x+1}{2}}}\\[6px]\tanh \left({\frac {x}{2}}\right)&={\frac {\sinh x}{\cosh x+1}}&&=\operatorname {sgn} x\,{\sqrt {\frac {\cosh x-1}{\cosh x+1}}}={\frac {e^{x}-1}{e^{x}+1}}\end{aligned}}}
where sgn is the sign function .
If x ≠ 0 , then[ 22]
tanh
(
x
2
)
=
cosh
x
−
1
sinh
x
=
coth
x
−
csch
x
{\displaystyle \tanh \left({\frac {x}{2}}\right)={\frac {\cosh x-1}{\sinh x}}=\coth x-\operatorname {csch} x}
sinh
2
x
=
1
2
(
cosh
2
x
−
1
)
cosh
2
x
=
1
2
(
cosh
2
x
+
1
)
{\displaystyle {\begin{aligned}\sinh ^{2}x&={\tfrac {1}{2}}(\cosh 2x-1)\\\cosh ^{2}x&={\tfrac {1}{2}}(\cosh 2x+1)\end{aligned}}}
The following inequality is useful in statistics:[ 23]
cosh
(
t
)
≤
e
t
2
/
2
.
{\displaystyle \operatorname {cosh} (t)\leq e^{t^{2}/2}.}
It can be proved by comparing the Taylor series of the two functions term by term.
Inverse functions as logarithms [ edit ]
arsinh
(
x
)
=
ln
(
x
+
x
2
+
1
)
arcosh
(
x
)
=
ln
(
x
+
x
2
−
1
)
x
≥
1
artanh
(
x
)
=
1
2
ln
(
1
+
x
1
−
x
)
|
x
|
<
1
arcoth
(
x
)
=
1
2
ln
(
x
+
1
x
−
1
)
|
x
|
>
1
arsech
(
x
)
=
ln
(
1
x
+
1
x
2
−
1
)
=
ln
(
1
+
1
−
x
2
x
)
0
<
x
≤
1
arcsch
(
x
)
=
ln
(
1
x
+
1
x
2
+
1
)
x
≠
0
{\displaystyle {\begin{aligned}\operatorname {arsinh} (x)&=\ln \left(x+{\sqrt {x^{2}+1}}\right)\\\operatorname {arcosh} (x)&=\ln \left(x+{\sqrt {x^{2}-1}}\right)&&x\geq 1\\\operatorname {artanh} (x)&={\frac {1}{2}}\ln \left({\frac {1+x}{1-x}}\right)&&|x|<1\\\operatorname {arcoth} (x)&={\frac {1}{2}}\ln \left({\frac {x+1}{x-1}}\right)&&|x|>1\\\operatorname {arsech} (x)&=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}-1}}\right)=\ln \left({\frac {1+{\sqrt {1-x^{2}}}}{x}}\right)&&0<x\leq 1\\\operatorname {arcsch} (x)&=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}+1}}\right)&&x\neq 0\end{aligned}}}
d
d
x
sinh
x
=
cosh
x
d
d
x
cosh
x
=
sinh
x
d
d
x
tanh
x
=
1
−
tanh
2
x
=
sech
2
x
=
1
cosh
2
x
d
d
x
coth
x
=
1
−
coth
2
x
=
−
csch
2
x
=
−
1
sinh
2
x
x
≠
0
d
d
x
sech
x
=
−
tanh
x
sech
x
d
d
x
csch
x
=
−
coth
x
csch
x
x
≠
0
{\displaystyle {\begin{aligned}{\frac {d}{dx}}\sinh x&=\cosh x\\{\frac {d}{dx}}\cosh x&=\sinh x\\{\frac {d}{dx}}\tanh x&=1-\tanh ^{2}x=\operatorname {sech} ^{2}x={\frac {1}{\cosh ^{2}x}}\\{\frac {d}{dx}}\coth x&=1-\coth ^{2}x=-\operatorname {csch} ^{2}x=-{\frac {1}{\sinh ^{2}x}}&&x\neq 0\\{\frac {d}{dx}}\operatorname {sech} x&=-\tanh x\operatorname {sech} x\\{\frac {d}{dx}}\operatorname {csch} x&=-\coth x\operatorname {csch} x&&x\neq 0\end{aligned}}}
d
d
x
arsinh
x
=
1
x
2
+
1
d
d
x
arcosh
x
=
1
x
2
−
1
1
<
x
d
d
x
artanh
x
=
1
1
−
x
2
|
x
|
<
1
d
d
x
arcoth
x
=
1
1
−
x
2
1
<
|
x
|
d
d
x
arsech
x
=
−
1
x
1
−
x
2
0
<
x
<
1
d
d
x
arcsch
x
=
−
1
|
x
|
1
+
x
2
x
≠
0
{\displaystyle {\begin{aligned}{\frac {d}{dx}}\operatorname {arsinh} x&={\frac {1}{\sqrt {x^{2}+1}}}\\{\frac {d}{dx}}\operatorname {arcosh} x&={\frac {1}{\sqrt {x^{2}-1}}}&&1<x\\{\frac {d}{dx}}\operatorname {artanh} x&={\frac {1}{1-x^{2}}}&&|x|<1\\{\frac {d}{dx}}\operatorname {arcoth} x&={\frac {1}{1-x^{2}}}&&1<|x|\\{\frac {d}{dx}}\operatorname {arsech} x&=-{\frac {1}{x{\sqrt {1-x^{2}}}}}&&0<x<1\\{\frac {d}{dx}}\operatorname {arcsch} x&=-{\frac {1}{|x|{\sqrt {1+x^{2}}}}}&&x\neq 0\end{aligned}}}
Each of the functions sinh and cosh is equal to its second derivative , that is:
d
2
d
x
2
sinh
x
=
sinh
x
{\displaystyle {\frac {d^{2}}{dx^{2}}}\sinh x=\sinh x}
d
2
d
x
2
cosh
x
=
cosh
x
.
{\displaystyle {\frac {d^{2}}{dx^{2}}}\cosh x=\cosh x\,.}
All functions with this property are linear combinations of sinh and cosh , in particular the exponential functions
e
x
{\displaystyle e^{x}}
and
e
−
x
{\displaystyle e^{-x}}
.[ 24]
∫
sinh
(
a
x
)
d
x
=
a
−
1
cosh
(
a
x
)
+
C
∫
cosh
(
a
x
)
d
x
=
a
−
1
sinh
(
a
x
)
+
C
∫
tanh
(
a
x
)
d
x
=
a
−
1
ln
(
cosh
(
a
x
)
)
+
C
∫
coth
(
a
x
)
d
x
=
a
−
1
ln
|
sinh
(
a
x
)
|
+
C
∫
sech
(
a
x
)
d
x
=
a
−
1
arctan
(
sinh
(
a
x
)
)
+
C
∫
csch
(
a
x
)
d
x
=
a
−
1
ln
|
tanh
(
a
x
2
)
|
+
C
=
a
−
1
ln
|
coth
(
a
x
)
−
csch
(
a
x
)
|
+
C
=
−
a
−
1
arcoth
(
cosh
(
a
x
)
)
+
C
{\displaystyle {\begin{aligned}\int \sinh(ax)\,dx&=a^{-1}\cosh(ax)+C\\\int \cosh(ax)\,dx&=a^{-1}\sinh(ax)+C\\\int \tanh(ax)\,dx&=a^{-1}\ln(\cosh(ax))+C\\\int \coth(ax)\,dx&=a^{-1}\ln \left|\sinh(ax)\right|+C\\\int \operatorname {sech} (ax)\,dx&=a^{-1}\arctan(\sinh(ax))+C\\\int \operatorname {csch} (ax)\,dx&=a^{-1}\ln \left|\tanh \left({\frac {ax}{2}}\right)\right|+C=a^{-1}\ln \left|\coth \left(ax\right)-\operatorname {csch} \left(ax\right)\right|+C=-a^{-1}\operatorname {arcoth} \left(\cosh \left(ax\right)\right)+C\end{aligned}}}
The following integrals can be proved using hyperbolic substitution :
∫
1
a
2
+
u
2
d
u
=
arsinh
(
u
a
)
+
C
∫
1
u
2
−
a
2
d
u
=
sgn
u
arcosh
|
u
a
|
+
C
∫
1
a
2
−
u
2
d
u
=
a
−
1
artanh
(
u
a
)
+
C
u
2
<
a
2
∫
1
a
2
−
u
2
d
u
=
a
−
1
arcoth
(
u
a
)
+
C
u
2
>
a
2
∫
1
u
a
2
−
u
2
d
u
=
−
a
−
1
arsech
|
u
a
|
+
C
∫
1
u
a
2
+
u
2
d
u
=
−
a
−
1
arcsch
|
u
a
|
+
C
{\displaystyle {\begin{aligned}\int {{\frac {1}{\sqrt {a^{2}+u^{2}}}}\,du}&=\operatorname {arsinh} \left({\frac {u}{a}}\right)+C\\\int {{\frac {1}{\sqrt {u^{2}-a^{2}}}}\,du}&=\operatorname {sgn} {u}\operatorname {arcosh} \left|{\frac {u}{a}}\right|+C\\\int {\frac {1}{a^{2}-u^{2}}}\,du&=a^{-1}\operatorname {artanh} \left({\frac {u}{a}}\right)+C&&u^{2}<a^{2}\\\int {\frac {1}{a^{2}-u^{2}}}\,du&=a^{-1}\operatorname {arcoth} \left({\frac {u}{a}}\right)+C&&u^{2}>a^{2}\\\int {{\frac {1}{u{\sqrt {a^{2}-u^{2}}}}}\,du}&=-a^{-1}\operatorname {arsech} \left|{\frac {u}{a}}\right|+C\\\int {{\frac {1}{u{\sqrt {a^{2}+u^{2}}}}}\,du}&=-a^{-1}\operatorname {arcsch} \left|{\frac {u}{a}}\right|+C\end{aligned}}}
where C is the constant of integration .
Taylor series expressions [ edit ]
It is possible to express explicitly the Taylor series at zero (or the Laurent series , if the function is not defined at zero) of the above functions.
sinh
x
=
x
+
x
3
3
!
+
x
5
5
!
+
x
7
7
!
+
⋯
=
∑
n
=
0
∞
x
2
n
+
1
(
2
n
+
1
)
!
{\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}}
This series is convergent for every complex value of x . Since the function sinh x is odd , only odd exponents for x occur in its Taylor series.
cosh
x
=
1
+
x
2
2
!
+
x
4
4
!
+
x
6
6
!
+
⋯
=
∑
n
=
0
∞
x
2
n
(
2
n
)
!
{\displaystyle \cosh x=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}}
This series is convergent for every complex value of x . Since the function cosh x is even , only even exponents for x occur in its Taylor series.
The sum of the sinh and cosh series is the infinite series expression of the exponential function .
The following series are followed by a description of a subset of their domain of convergence , where the series is convergent and its sum equals the function.
tanh
x
=
x
−
x
3
3
+
2
x
5
15
−
17
x
7
315
+
⋯
=
∑
n
=
1
∞
2
2
n
(
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
,
|
x
|
<
π
2
coth
x
=
x
−
1
+
x
3
−
x
3
45
+
2
x
5
945
+
⋯
=
∑
n
=
0
∞
2
2
n
B
2
n
x
2
n
−
1
(
2
n
)
!
,
0
<
|
x
|
<
π
sech
x
=
1
−
x
2
2
+
5
x
4
24
−
61
x
6
720
+
⋯
=
∑
n
=
0
∞
E
2
n
x
2
n
(
2
n
)
!
,
|
x
|
<
π
2
csch
x
=
x
−
1
−
x
6
+
7
x
3
360
−
31
x
5
15120
+
⋯
=
∑
n
=
0
∞
2
(
1
−
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
,
0
<
|
x
|
<
π
{\displaystyle {\begin{aligned}\tanh x&=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\cdots =\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}},\qquad \left|x\right|<{\frac {\pi }{2}}\\\coth x&=x^{-1}+{\frac {x}{3}}-{\frac {x^{3}}{45}}+{\frac {2x^{5}}{945}}+\cdots =\sum _{n=0}^{\infty }{\frac {2^{2n}B_{2n}x^{2n-1}}{(2n)!}},\qquad 0<\left|x\right|<\pi \\\operatorname {sech} x&=1-{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}-{\frac {61x^{6}}{720}}+\cdots =\sum _{n=0}^{\infty }{\frac {E_{2n}x^{2n}}{(2n)!}},\qquad \left|x\right|<{\frac {\pi }{2}}\\\operatorname {csch} x&=x^{-1}-{\frac {x}{6}}+{\frac {7x^{3}}{360}}-{\frac {31x^{5}}{15120}}+\cdots =\sum _{n=0}^{\infty }{\frac {2(1-2^{2n-1})B_{2n}x^{2n-1}}{(2n)!}},\qquad 0<\left|x\right|<\pi \end{aligned}}}
where:
Infinite products and continued fractions [ edit ]
The following expansions are valid in the whole complex plane:
sinh
x
=
x
∏
n
=
1
∞
(
1
+
x
2
n
2
π
2
)
=
x
1
−
x
2
2
⋅
3
+
x
2
−
2
⋅
3
x
2
4
⋅
5
+
x
2
−
4
⋅
5
x
2
6
⋅
7
+
x
2
−
⋱
{\displaystyle \sinh x=x\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{n^{2}\pi ^{2}}}\right)={\cfrac {x}{1-{\cfrac {x^{2}}{2\cdot 3+x^{2}-{\cfrac {2\cdot 3x^{2}}{4\cdot 5+x^{2}-{\cfrac {4\cdot 5x^{2}}{6\cdot 7+x^{2}-\ddots }}}}}}}}}
cosh
x
=
∏
n
=
1
∞
(
1
+
x
2
(
n
−
1
/
2
)
2
π
2
)
=
1
1
−
x
2
1
⋅
2
+
x
2
−
1
⋅
2
x
2
3
⋅
4
+
x
2
−
3
⋅
4
x
2
5
⋅
6
+
x
2
−
⋱
{\displaystyle \cosh x=\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{(n-1/2)^{2}\pi ^{2}}}\right)={\cfrac {1}{1-{\cfrac {x^{2}}{1\cdot 2+x^{2}-{\cfrac {1\cdot 2x^{2}}{3\cdot 4+x^{2}-{\cfrac {3\cdot 4x^{2}}{5\cdot 6+x^{2}-\ddots }}}}}}}}}
tanh
x
=
1
1
x
+
1
3
x
+
1
5
x
+
1
7
x
+
⋱
{\displaystyle \tanh x={\cfrac {1}{{\cfrac {1}{x}}+{\cfrac {1}{{\cfrac {3}{x}}+{\cfrac {1}{{\cfrac {5}{x}}+{\cfrac {1}{{\cfrac {7}{x}}+\ddots }}}}}}}}}
Comparison with circular functions [ edit ]
Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector area u and hyperbolic functions depending on hyperbolic sector area u .
The hyperbolic functions represent an expansion of trigonometry beyond the circular functions . Both types depend on an argument , either circular angle or hyperbolic angle .
Since the area of a circular sector with radius r and angle u (in radians) is r 2 u /2 , it will be equal to u when r = √2 . In the diagram, such a circle is tangent to the hyperbola xy = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red regions together depict a hyperbolic sector with area corresponding to hyperbolic angle magnitude.
The legs of the two right triangles with hypotenuse on the ray defining the angles are of length √2 times the circular and hyperbolic functions.
The hyperbolic angle is an invariant measure with respect to the squeeze mapping , just as the circular angle is invariant under rotation.[ 25]
The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers.
The graph of the function a cosh(x /a ) is the catenary , the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
Relationship to the exponential function [ edit ]
The decomposition of the exponential function in its even and odd parts gives the identities
e
x
=
cosh
x
+
sinh
x
,
{\displaystyle e^{x}=\cosh x+\sinh x,}
and
e
−
x
=
cosh
x
−
sinh
x
.
{\displaystyle e^{-x}=\cosh x-\sinh x.}
Combined with Euler's formula
e
i
x
=
cos
x
+
i
sin
x
,
{\displaystyle e^{ix}=\cos x+i\sin x,}
this gives
e
x
+
i
y
=
(
cosh
x
+
sinh
x
)
(
cos
y
+
i
sin
y
)
{\displaystyle e^{x+iy}=(\cosh x+\sinh x)(\cos y+i\sin y)}
for the general complex exponential function .
Additionally,
e
x
=
1
+
tanh
x
1
−
tanh
x
=
1
+
tanh
x
2
1
−
tanh
x
2
{\displaystyle e^{x}={\sqrt {\frac {1+\tanh x}{1-\tanh x}}}={\frac {1+\tanh {\frac {x}{2}}}{1-\tanh {\frac {x}{2}}}}}
Hyperbolic functions for complex numbers [ edit ]
Hyperbolic functions in the complex plane
sinh
(
z
)
{\displaystyle \sinh(z)}
cosh
(
z
)
{\displaystyle \cosh(z)}
tanh
(
z
)
{\displaystyle \tanh(z)}
coth
(
z
)
{\displaystyle \coth(z)}
sech
(
z
)
{\displaystyle \operatorname {sech} (z)}
csch
(
z
)
{\displaystyle \operatorname {csch} (z)}
Since the exponential function can be defined for any complex argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions sinh z and cosh z are then holomorphic .
Relationships to ordinary trigonometric functions are given by Euler's formula for complex numbers:
e
i
x
=
cos
x
+
i
sin
x
e
−
i
x
=
cos
x
−
i
sin
x
{\displaystyle {\begin{aligned}e^{ix}&=\cos x+i\sin x\\e^{-ix}&=\cos x-i\sin x\end{aligned}}}
so:
cosh
(
i
x
)
=
1
2
(
e
i
x
+
e
−
i
x
)
=
cos
x
sinh
(
i
x
)
=
1
2
(
e
i
x
−
e
−
i
x
)
=
i
sin
x
cosh
(
x
+
i
y
)
=
cosh
(
x
)
cos
(
y
)
+
i
sinh
(
x
)
sin
(
y
)
sinh
(
x
+
i
y
)
=
sinh
(
x
)
cos
(
y
)
+
i
cosh
(
x
)
sin
(
y
)
tanh
(
i
x
)
=
i
tan
x
cosh
x
=
cos
(
i
x
)
sinh
x
=
−
i
sin
(
i
x
)
tanh
x
=
−
i
tan
(
i
x
)
{\displaystyle {\begin{aligned}\cosh(ix)&={\frac {1}{2}}\left(e^{ix}+e^{-ix}\right)=\cos x\\\sinh(ix)&={\frac {1}{2}}\left(e^{ix}-e^{-ix}\right)=i\sin x\\\cosh(x+iy)&=\cosh(x)\cos(y)+i\sinh(x)\sin(y)\\\sinh(x+iy)&=\sinh(x)\cos(y)+i\cosh(x)\sin(y)\\\tanh(ix)&=i\tan x\\\cosh x&=\cos(ix)\\\sinh x&=-i\sin(ix)\\\tanh x&=-i\tan(ix)\end{aligned}}}
Thus, hyperbolic functions are periodic with respect to the imaginary component, with period
2
π
i
{\displaystyle 2\pi i}
(
π
i
{\displaystyle \pi i}
for hyperbolic tangent and cotangent).
^ a b c d Weisstein, Eric W. "Hyperbolic Functions" . mathworld.wolfram.com . Retrieved 2020-08-29 .
^ (1999) Collins Concise Dictionary , 4th edition, HarperCollins, Glasgow, ISBN 0 00 472257 4 , p. 1386
^ a b Collins Concise Dictionary , p. 328
^ a b "Hyperbolic Functions" . www.mathsisfun.com . Retrieved 2020-08-29 .
^ Collins Concise Dictionary , p. 1520
^ Collins Concise Dictionary , p. 329
^ tanh
^ Collins Concise Dictionary , p. 1340
^ Woodhouse, N. M. J. (2003), Special Relativity , London: Springer, p. 71, ISBN 978-1-85233-426-0
^ Abramowitz, Milton ; Stegun, Irene A. , eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , New York: Dover Publications , ISBN 978-0-486-61272-0
^ Some examples of using arcsinh found in Google Books .
^ Niven, Ivan (1985). Irrational Numbers . Vol. 11. Mathematical Association of America. ISBN 9780883850381 . JSTOR 10.4169/j.ctt5hh8zn .
^ a b George F. Becker; C. E. Van Orstrand (1909). Hyperbolic Functions . Universal Digital Library. The Smithsonian Institution.
^ a b c d e f McMahon, James (1896). Hyperbolic Functions . Osmania University, Digital Library Of India. John Wiley And Sons.
^ a b c d Bradley, Robert E.; D'Antonio, Lawrence A.; Sandifer, Charles Edward. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100.
^ Becker, Georg F. Hyperbolic functions. Read Books, 1931. Page xlviii.
^ N.P., Bali (2005). Golden Integral Calculus . Firewall Media. p. 472. ISBN 81-7008-169-6 .
^ Steeb, Willi-Hans (2005). Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs (3rd ed.). World Scientific Publishing Company. p. 281. ISBN 978-981-310-648-2 . Extract of page 281 (using lambda=1)
^ Oldham, Keith B.; Myland, Jan; Spanier, Jerome (2010). An Atlas of Functions: with Equator, the Atlas Function Calculator (2nd, illustrated ed.). Springer Science & Business Media. p. 290. ISBN 978-0-387-48807-3 . Extract of page 290
^ Osborn, G. (July 1902). "Mnemonic for hyperbolic formulae" . The Mathematical Gazette . 2 (34): 189. doi :10.2307/3602492 . JSTOR 3602492 . S2CID 125866575 .
^ Martin, George E. (1986). The foundations of geometry and the non-Euclidean plane (1st corr. ed.). New York: Springer-Verlag. p. 416. ISBN 3-540-90694-0 .
^ "Prove the identity tanh(x/2) = (cosh(x) - 1)/sinh(x)" . StackExchange (mathematics). Retrieved 24 January 2016 .
^ Audibert, Jean-Yves (2009). "Fast learning rates in statistical inference through aggregation". The Annals of Statistics. p. 1627. [1]
^ Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Hyperbolic functions" , NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
^ Haskell, Mellen W. , "On the introduction of the notion of hyperbolic functions", Bulletin of the American Mathematical Society 1 :6:155–9, full text
Trigonometric and hyperbolic functions
Groups Other